Publications

Refereed publications to May 2021

The numbers in brackets at the end of each entry are the citations to date.

All papers may be accessed on https://ui.adsabs.harvard.edu/.

Total citations 1216

  1. Stach, S. M., Smail, I., Amvrosiadis, A., et al. 2021, An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS eld: halo masses for submillimetre galaxies. Mon. Not. R. astr. Soc.,504, 172. [0]
  2. Ganeshaiah Veena, P., Cautun, M., van de Weygaert, R., Tempel, E., & Frenk, C. S. 2021, Cosmic Ballet III: Halo spin evolution in the cosmic web. Mon. Not. R. astr. Soc., 503, 2280. [6]
  3. Upadhyay, A. K., Oman, K. A., & Trager, S. C. 2021, Star formation histories of Coma Cluster galaxies matched to simulated orbits hint at quenching around first pericenter. arXiv e-prints,arXiv:2104.04388. [0]
  4. Lovell, M. R., Cautun, M., Frenk, C. S., Hellwing, W. A., & Newton, O. 2021, The spatial distribution of Milky Way satellites, gaps in streams and the nature of dark matter. arXiv e-prints, arXiv:2104.03322.[0]
  5. Kelly, A. J., Jenkins, A., & Frenk, C. S. 2021, The origin of X-ray coronae around simulated disc galaxies. Mon. Not. R. astr. Soc., 502, 2934. [2]
  6. Board, E., Bozorgnia, N., Strigari, L. E., et al. 2021, Velocity-dependent J-factors for annihilation radiation from cosmological simulations. JCAP, 2021, 070. [1]
  7. Thomas, G. F., Martin, N. F., Fattahi, A., et al. 2021, Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline. Astrophys. J., 910, 92. [0]
  8. Sawala, T., McAlpine, S., Jasche, J., et al. 2021, The SIBELIUS Project: E Pluribus Unum. arXiv e-prints, arXiv:2103.12073. [0]
  9. Oman, K. A., Bah´e, Y. M., Healy, J., et al. 2021, A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters. Mon. Not. R. astr. Soc., 501, 5073. [7]
  10. Sawala, T., Jenkins, A., McAlpine, S., et al. 2021, Setting the stage: structures from Gaussian random fields. Mon. Not. R. astr. Soc., 501, 4759. [2]
  11. Richings, J., Frenk, C., Jenkins, A., Robertson, A., & Schaller, M. 2021, A high-resolution cosmological simulation of a strong gravitational lens. Mon. Not. R. astr. Soc., 501, 4657. [4]
  12. Chan, T. K., Theuns, T., Bower, R., & Frenk, C. 2021, Smoothed Particle Radiation Hydrodynamics: Two-Moment method with Local Eddington Tensor Closure. arXiv e-prints, arXiv:2102.08404. [0]
  13. Nightingale, J., Hayes, R., Kelly, A., et al. 2021, PyAutoLens: Open-Source Strong Gravitational Lensing. The Journal of Open Source Software, 6, 2825. [1]
  14. G´omez, F. A., Torres-Flores, S., Mora-Urrejola, C., et al. 2021, A Tidally Induced Global Corrugation Pattern in an External Disk Galaxy Similar to the Milky Way. Astrophys. J., 908, 27. [2]
  15. Deason, A. J., Oman, K. A., Fattahi, A., et al. 2021, Stellar splashback: the edge of the intracluster light. Mon. Not. R. astr. Soc., 500, 4181. [8]
  16. Shao, S., Cautun, M., Frenk, C. S., et al. 2020, The survival of globular clusters in a cuspy Fornax. arXiv e-prints, arXiv:2012.08058. [4]
  17. Shao, S., Cautun, M., Deason, A., & Frenk, C. S. 2020, The twisted dark matter halo of the Milky Way. Mon. Not. R. astr. Soc.,. [3]
  18. Genina, A., Read, J. I., Fattahi, A., & Frenk, C. S. 2020, Can tides explain the low dark matter density in Fornax?. arXiv e-prints, arXiv:2011.09482. [6]
  19. Newton, O., Leo, M., Cautun, M., et al. 2020, Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way. arXiv e-prints, arXiv:2011.08865. [6]
  20. Alam, S., Aviles, A., Bean, R., et al. 2020, Testing the theory of gravity with DESI: estimators, predictions and simulation requirements. arXiv e-prints, arXiv:2011.05771. [6]
  21. Benitez-Llambay, A., & Frenk, C. 2020, The detailed structure and the onset of galaxy formation in low-mass gaseous dark matter haloes. Mon. Not. R. astr. Soc., 498, 4887. [10]
  22. Enzi, W., Murgia, R., Newton, O., et al. 2020, Joint constraints on thermal relic dark matter from a selection of astrophysical probes. arXiv e-prints, arXiv:2010.13802. [11]
  23. He, Q., Robertson, A., Nightingale, J., et al. 2020, A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses. arXiv e-prints, arXiv:2010.13221. [5]
  24. Elbers, W., Frenk, C. S., Jenkins, A., Li, B., & Pascoli, S. 2020, An optimal nonlinear method for simulating relic neutrinos. arXiv e-prints, arXiv:2010.07321. [3]
  25. Lovell, M. R., Hellwing, W., Ludlow, A., et al. 2020, Local group star formation in warm and self-interacting dark matter cosmologies. Mon. Not. R. astr. Soc., 498, 702. [7]
  26. Genina, A., Read, J. I., Frenk, C. S., et al. 2020, To β or not to β: can higher order Jeans analysis break the mass-anisotropy degeneracy in simulated dwarfs?. Mon. Not. R. astr. Soc., 498, 144. [12]
  27. Ploeckinger, S., & Schaye, J. 2020, Radiative cooling rates, ion fractions, molecule abundances, and line emissivities including self-shielding and both local and metagalactic radiation fields. Mon. Not. R.astr. Soc., 497, 4857. [5]
  28. Fattahi, A., Deason, A. J., Frenk, C. S., et al. 2020, A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the Milky Way’s stellar halo. Mon. Not. R. astr. Soc., 497,4459. [14]
  29. Evans, T. A., Fattahi, A., Deason, A. J., & Frenk, C. S. 2020, How unusual is the Milky Way’s assembly history?. Mon. Not. R. astr. Soc., 497, 4311. [4]
  30. Wang, J., Bose, S., Frenk, C. S., et al. 2020, Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. Nature, 585, 39. [43]
  31. He, Q., Li, H., Li, R., et al. 2020, Constraining the inner density slope of massive galaxy clusters. Mon. Not. R. astr. Soc., 496, 4717. [10]
  32. Deason, A. J., Fattahi, A., Frenk, C. S., et al. 2020, The edge of the Galaxy. Mon. Not. R. astr. Soc., 496, 3929. [14]
  33. Marasco, A., Posti, L., Oman, K., et al. 2020, Massive disc galaxies too dominated by dark matter in cosmological hydrodynamical simulations. Astron. Astrophys., 640, A70. [9]
  34. Bozorgnia, N., Fattahi, A., Frenk, C. S., et al. 2020, The dark matter component of the Gaia radially anisotropic substructure. JCAP, 2020, 036. [17]
  35. Oman, K. A., Brouwer, M. M., Ludlow, A. D., & Navarro, J. F. 2020, Observational constraints on the slope of the radial acceleration relation at low accelerations. arXiv e-prints, arXiv:2006.06700. [1]
  36. Bose, S., Deason, A. J., Belokurov, V., & Frenk, C. S. 2020, The little things matter: relating the abundance of ultrafaint satellites to the hosts’ assembly history. Mon. Not. R. astr. Soc., 495, 743. [11]
  37. Santos-Santos, I. M. E., Navarro, J. F., Robertson, A., et al. 2020, Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves. Mon. Not. R. astr. Soc., 495, 58. [23]
  38. Callingham, T. M., Cautun, M., Deason, A. J., et al. 2020, The orbital phase space of contracted dark matter haloes. Mon. Not. R. astr. Soc., 495, 12. [8]
  39. Cautun, M., Ben´itez-Llambay, A., Deason, A. J., et al. 2020, The milky way total mass profile as inferred from Gaia DR2. Mon. Not. R. astr. Soc., 494, 4291. [78]
  40. Hern´andez-Aguayo, C., Cautun, M., Smith, A., Baugh, C. M., & Li, B. 2020, Measuring the baryon acoustic oscillation peak position with different galaxy selections. Mon. Not. R. astr. Soc., 494, 3120. [2]
  41. Sirks, E. L., Clark, P., Massey, R. J., et al. 2020, Download by parachute: retrieval of assets from high altitude balloons. Journal of Instrumentation, 15, P05014. [1]
  42. Fattahi, A., Navarro, J. F., & Frenk, C. S. 2020, The missing dwarf galaxies of the Local Group. Mon. Not. R. astr. Soc., 493, 2596. [5]
  43. Richings, J., Frenk, C., Jenkins, A., et al. 2020, Subhalo destruction in the APOSTLE and AURIGA simulations. Mon. Not. R. astr. Soc., 492, 5780. [32]
  44. Blandford, R., Dunkley, J., Frenk, C., Lahav, O., & Shapley, A. 2020, Coming of age of the standard model. Nature Astronomy, 4, 122. [3]
  45. Hartsuiker, L., & Ploeckinger, S. 2020, Abundance and group coalescence time-scales of compact groups of galaxies in the EAGLE simulation. Mon. Not. R. astr. Soc., 491, L66. [3]
  46. Meadows, N., Navarro, J. F., Santos-Santos, I., Ben´itez-Llambay, A., & Frenk, C. 2020,Cusp or core? Revisiting the globular cluster timing problem in Fornax. Mon. Not. R. astr. Soc., 491, 3336. [10]
  47. Liao, S., Gao, L., Frenk, C. S., et al. 2019, Ultra-diffuse galaxies in the Auriga simulations. Mon. Not. R. astr. Soc., 490, 5182. [30]
  48. Davies, C. T., Cautun, M., & Li, B. 2019, Cosmological test of gravity using weak lensing voids. Mon. Not. R. astr. Soc., 490, 4907. [15]
  49. Simpson, C. M., Gargiulo, I., G´omez, F. A., et al. 2019, Simulating cosmological substructure in the solar neighbourhood. Mon. Not. R. astr. Soc., 490, L32. [6]
  50. Shao, S., Li, B., Cautun, M., Wang, H., & Wang, J. 2019, Screening maps of the local Universe I - Methodology. Mon. Not. R. astr. Soc., 489, 4912. [5]
  51. Garzilli, A., Magalich, A., Theuns, T., et al. 2019, The Lyman-forest as a diagnostic of the nature of the dark matter. Mon. Not. R. astr. Soc., 489, 3456. [25]
  52. Davies, C. T., Cautun, M., & Li, B. 2019, The self-similarity of weak lensing peaks. Mon. Not. R. astr. Soc., 488, 5833. [8]
  53. Ben´itez-Llambay, A., Frenk, C. S., Ludlow, A. D., & Navarro, J. F. 2019, Baryon-induced dark matter cores in the EAGLE simulations. Mon. Not. R. astr. Soc., 488, 2387. [46]
  54. Genina, A., Frenk, C. S., Ben´itez-Llambay, A., et al. 2019, The distinct stellar metallicity populations of simulated Local Group dwarfs. Mon. Not. R. astr. Soc., 488, 2312. [8]
  55. Shao, S., Cautun, M., & Frenk, C. S. 2019, Evolution of galactic planes of satellites in the EAGLE simulation. Mon. Not. R. astr. Soc., 488, 1166. [20]
  56. Zavala, J., & Frenk, C. S. 2019, Dark Matter Haloes and Subhaloes. Galaxies, 7, 81. [36]
  57. Levi, M., Allen, L. E., Raichoor, A., et al. 2019, The Dark Energy Spectroscopic Instrument (DESI). Bull. Am. Astron. Soc., 51, 57. [31]
  58. Cowley, W. I., Lacey, C. G., Baugh, C. M., et al. 2019, The evolution of the UV-to-mm extragalactic background light: evidence for a top-heavy initial mass function?. Mon. Not. R. astr. Soc., 487, 3082. [14]
  59. Ganeshaiah Veena, P., Cautun, M., Tempel, E., van de Weygaert, R., & Frenk, C. S. 2019, The Cosmic Ballet II: spin alignment of galaxies and haloes with large-scale filaments in the EAGLE simulation. Mon. Not. R. astr. Soc., 487, 1607. [36]
  60. Bose, S., Frenk, C. S., Jenkins, A., et al. 2019, No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Mon. Not. R. astr. Soc., 486, 4790. [46]
  61. Riley, A. H., Fattahi, A., Pace, A. B., et al. 2019, The velocity anisotropy of the Milky Way satellite system. Mon. Not. R. astr. Soc., 486, 2679. [13]
  62. Hou, J., Lacey, C. G., & Frenk, C. S. 2019, A comparison between semi-analytical gas cooling models and cosmological hydrodynamical simulations. Mon. Not. R. astr. Soc., 486, 1691. [2]
  63. Digby, R., Navarro, J. F., Fattahi, A., et al. 2019, The star formation histories of dwarf galaxies in Local Group cosmological simulations. Mon. Not. R. astr. Soc., 485, 5423. [19]
  64. Bozorgnia, N., Fattahi, A., Cerde~no, D. G., et al. 2019, On the correlation between the local dark matter and stellar velocities. JCAP, 2019, 045. [9]
  65. Lovell, M. R., Barnes, D., Bah´e, Y., et al. 2019, The signal of decaying dark matter with hydrodynamical simulations. Mon. Not. R. astr. Soc., 485, 4071. [7]
  66. Monachesi, A., G´omez, F. A., Grand, R. J. J., et al. 2019, The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Mon. Not. R. astr. Soc., 485, 2589.[72]
  67. Callingham, T. M., Cautun, M., Deason, A. J., et al. 2019, The mass of the Milky Way from satellite dynamics. Mon. Not. R. astr. Soc., 484, 5453. [63]
  68. Fattahi, A., Belokurov, V., Deason, A. J., et al. 2019, The origin of galactic metal-rich stellar halo components with highly eccentric orbits. Mon. Not. R. astr. Soc., 484, 4471. [52]
  69. Ploeckinger, S., Schaye, J., Hacar, A., et al. 2019, Does radiative feedback make faint z>6 galaxies look small?. Mon. Not. R. astr. Soc., 484, 4379. [1]
  70. Lovell, M. R., Iakubovskyi, D., Barnes, D., et al. 2019, Simulating the Dark Matter Decay Signal from the Perseus Galaxy Cluster. Astrophys. J. Lett., 875, L24. [0]
  71. de Jong, R. S., Agertz, O., Berbel, A. A., et al. 2019, 4MOST: Project overview and information for the First Call for Proposals. The Messenger, 175, 3. [98]
  72. Cautun, M., Deason, A. J., Frenk, C. S., & McAlpine, S. 2019,The aftermath of the Great Collision between our Galaxy and the Large Magellanic Cloud. Mon. Not. R. astr. Soc., 483, 2185. [17]
  73. Oman, K. A., Marasco, A., Navarro, J. F., et al. 2019, Non-circular motions and the diversity of dwarf galaxy rotation curves. Mon. Not. R. astr. Soc., 482, 821. [57]